Solving RED with Weighted Proximal Methods

Tao Hong Joint work with Irad Yavneh and Michael Zibulevsky

> Computer Science Department Technion - Israel Institute of Technology

Outline

Background

RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

Background RED and Its Properties

Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

Image Denoising - "Simplest" Inverse:

Image Denoising - "Simplest" Inverse:

How?

Image Denoising - "Simplest" Inverse:

Image Denoising - "Simplest" Inverse:

Finding effective $\rho(\cdot)$?

image denoising

About 123'000 results (0.05 sec)

A non-local algorithm for image denoising

<u>ABuades</u>, B Coll, <u>JM Morel</u> - 2005 IEEE Computer Society ... 2005 - iseexplore isee .org We propose a new measure, the method noise, to evaluate and compare the performance of digital image demoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new ... $\frac{1}{2}$ 9D Cited Ved9B Related articles. All 24 versions ²⁰

Can we utilize these denoising algorithms as the prior? and How?

image denoising

About 123'000 results (0.05 sec)

A non-local algorithm for image denoising

<u>ABuades</u>, B Coll, <u>JM Morel</u> - 2005 IEEE Computer Society ... 2005 - insexplore issee org We propose a new measure, the method noise, to evaluate and compare the performance of digital **image denoising** methods. We first compute and analyze this method noise for a wide class of **denoising** algorithms, namely the local smoothing filters. Second, we propose a new ... $\frac{N}{2}$ 90 Cited V4996 Related articles. MI24 versions ¹⁰

Can we utilize these denoising algorithms as the prior? and How? semi-positive

image denoising

About 123'000 results (0.05 sec)

A non-local algorithm for image denoising A bases B col. M Morei - 2008 IEEE Computer Society ... 2005 - lesexplore lese org We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first computer and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new ... $c_{\rm D}$ TO ICted y 966 Related ancies AI 24 versions 50

Can we utilize these denoising algorithms as the prior? and How? semi-positive

Romano et al. [REM17] \rightarrow RED:

$$\rho(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathcal{T}} (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))$$

f(x) : abstract image denoising algorithms

image denoising

About 123'000 results (0.05 sec)

A non-local algorithm for image denoising A bases B col. M Morei - 2008 IEEE Computer Society ... 2005 - lesexplore lese org We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first computer and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new ... $c_{\rm D}$ TO ICted y 966 Related ancies AI 24 versions 50

Can we utilize these denoising algorithms as the prior? and How? semi-positive

Romano et al. [REM17] \rightarrow RED:

$$\rho(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathcal{T}} (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))$$

f(x) : abstract image denoising algorithms

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \phi(\boldsymbol{x}) \triangleq \ell(\boldsymbol{x}, \boldsymbol{y}) + \frac{\lambda}{2} \boldsymbol{x}^{T} (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))$$

image denoising

About 123'000 results (0.05 sec)

A non-local algorithm for image denoising A bases B col. M Morei - 2008 IEEE Computer Society ... 2005 - lesexplore lese org We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first computer and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new ... $c_{\rm D}$ TO ICted y 966 Related ancies AI 24 versions 50

Can we utilize these denoising algorithms as the prior? and How? semi-positive

Romano et al. [REM17] \rightarrow RED:

$$\rho(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathcal{T}} (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))$$

 $f(\mathbf{x})$: abstract image denoising algorithms

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \phi(\boldsymbol{x}) \triangleq \ell(\boldsymbol{x}, \boldsymbol{y}) + \frac{\lambda}{2} \boldsymbol{x}^{\mathcal{T}}(\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))$$

How to minimize $\phi(\mathbf{x})$? It is weird $\rightarrow \mathbf{f}(\mathbf{x})$.

The Properties of RED

Assumptions:

- Differentiability: $f(\mathbf{x}) : [0,1]^n \rightarrow [0,1]^n$
- ► Local Homogeneity: $f(c\mathbf{x}) = cf(\mathbf{x})$, if $|c-1| \le \varepsilon \ll 1$
- ▶ Passivity: ||*f*(*x*)|| ≤ ||*x*||

The Properties of RED

Assumptions:

- Differentiability: $f(\mathbf{x}) : [0,1]^n \rightarrow [0,1]^n$
- ► Local Homogeneity: $f(c\mathbf{x}) = cf(\mathbf{x})$, if $|c-1| \le \varepsilon \ll 1$
- ▶ Passivity: ||*f*(*x*)|| ≤ ||*x*||

$$\nabla_{\mathbf{x}} f(\mathbf{x}) \cdot \mathbf{x} = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{x}) - f(\mathbf{x})}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \frac{(1 + \varepsilon)f(\mathbf{x}) - f(\mathbf{x})}{\varepsilon}$$
$$= f(\mathbf{x})$$

$$\frac{\partial \left(\frac{1}{2} \mathbf{x}^{\mathcal{T}} \left(\mathbf{x} - \mathbf{f}(\mathbf{x})\right)\right)}{\partial \mathbf{x}} = \mathbf{x} - \frac{1}{2} \mathbf{f}(\mathbf{x}) - \frac{1}{2} \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) \cdot \mathbf{x} = \boxed{\mathbf{x} - \mathbf{f}(\mathbf{x})}$$
$$\frac{\partial^2 \left(\frac{1}{2} \mathbf{x}^{\mathcal{T}} \left(\mathbf{x} - \mathbf{f}(\mathbf{x})\right)\right)}{\partial \mathbf{x} \partial \mathbf{x}^{\mathcal{T}}} \succeq 0$$

The Properties of RED

Assumptions:

- Differentiability: $f(\mathbf{x}) : [0,1]^n \rightarrow [0,1]^n$
- ► Local Homogeneity: $f(c\mathbf{x}) = cf(\mathbf{x})$, if $|c-1| \le \varepsilon \ll 1$
- ▶ Passivity: ||*f*(*x*)|| ≤ ||*x*||

$$\nabla_{\mathbf{x}} f(\mathbf{x}) \cdot \mathbf{x} = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{x}) - f(\mathbf{x})}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \frac{(1 + \varepsilon)f(\mathbf{x}) - f(\mathbf{x})}{\varepsilon}$$
$$= f(\mathbf{x})$$

$$\frac{\partial \left(\frac{1}{2} \boldsymbol{x}^{\mathcal{T}} \left(\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x})\right)\right)}{\partial \boldsymbol{x}} = \boldsymbol{x} - \frac{1}{2} \boldsymbol{f}(\boldsymbol{x}) - \frac{1}{2} \nabla_{\boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{x} = \boxed{\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x})}$$
$$\frac{\partial^{2} \left(\frac{1}{2} \boldsymbol{x}^{\mathcal{T}} \left(\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x})\right)\right)}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathcal{T}}} \succeq \boldsymbol{0}$$

Conclusions:

- ► $\rho(\mathbf{x})$ is convex. If $\ell(\mathbf{x}, \mathbf{y})$ is convex, $\phi(\mathbf{x})$ is convex.
- Evaluate one time gradient or $\phi(\mathbf{x})$, call one time $f(\mathbf{x})$.

How Many Algorithms Satisfy these Assumptions?

[REM17]: We have many, some of them are state-of-the-art.

NLM, Bilateral, kernal regression, TNRD etc.

Others ϵ -modified: Median, K-svd, BM3D, EPLL, CNN etc.

Background RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

 gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]

- gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]
- ADMM [BPC⁺11]

- gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]
- ADMM [BPC⁺11]
- fixed-point (FP) [REM17]

$$\frac{1}{\sigma^2} \boldsymbol{H}^{\mathcal{T}} \left(\boldsymbol{H} \boldsymbol{x}_{k+1} - \boldsymbol{y} \right) + \lambda \left(\boldsymbol{x}_{k+1} - \boldsymbol{f}(\boldsymbol{x}_k) \right) = 0 \quad \text{Fourier or CG}$$

- gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]
- ADMM [BPC⁺11]
- fixed-point (FP) [REM17]

$$\frac{1}{\sigma^2} \boldsymbol{H}^{\mathcal{T}} \left(\boldsymbol{H} \boldsymbol{x}_{k+1} - \boldsymbol{y} \right) + \lambda \left(\boldsymbol{x}_{k+1} - \boldsymbol{f}(\boldsymbol{x}_k) \right) = 0 \quad \text{Fourier or CG}$$

Vector Extrapolation (VE) [HRE19]

- gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]
- ADMM [BPC⁺11]
- fixed-point (FP) [REM17]

$$\frac{1}{\sigma^2} \boldsymbol{H}^{\mathcal{T}} \left(\boldsymbol{H} \boldsymbol{x}_{k+1} - \boldsymbol{y} \right) + \lambda \left(\boldsymbol{x}_{k+1} - \boldsymbol{f}(\boldsymbol{x}_k) \right) = 0 \quad \text{Fourier or CG}$$

- Vector Extrapolation (VE) [HRE19]
- Accelerated Proximal Gradient (APG) [RS19]

▶ ..

In practice: $APG \ge VE > FP > ADMM > gradient based$

- gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]
- ADMM [BPC⁺11]
- fixed-point (FP) [REM17]

$$\frac{1}{\sigma^2} \boldsymbol{H}^{\mathcal{T}} \left(\boldsymbol{H} \boldsymbol{x}_{k+1} - \boldsymbol{y} \right) + \lambda \left(\boldsymbol{x}_{k+1} - \boldsymbol{f}(\boldsymbol{x}_k) \right) = 0 \quad \text{Fourier or CG}$$

- Vector Extrapolation (VE) [HRE19]
- Accelerated Proximal Gradient (APG) [RS19]

▶ ...

In practice: $APG \ge VE > FP > ADMM > gradient based But, but, but$

- gradient based methods: gradient descent/Nesterov Acceleration, conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]
- ADMM [BPC⁺11]
- fixed-point (FP) [REM17]

$$\frac{1}{\sigma^2} \boldsymbol{H}^{\mathcal{T}} \left(\boldsymbol{H} \boldsymbol{x}_{k+1} - \boldsymbol{y} \right) + \lambda \left(\boldsymbol{x}_{k+1} - \boldsymbol{f}(\boldsymbol{x}_k) \right) = 0 \quad \text{Fourier or CG}$$

- Vector Extrapolation (VE) [HRE19]
- Accelerated Proximal Gradient (APG) [RS19]

▶ ..

In practice: $APG \ge VE > FP > ADMM > gradient based But, but, but Weighted Proximal Methods can do better. :-)$

Background

RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration

How? and Why? - WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

Development of the Proximal Gradient Methods

Composite problem:

$$\min_{\boldsymbol{x}} \phi(\boldsymbol{x}) \triangleq g(\boldsymbol{x}) + h(\boldsymbol{x})$$

 $g(\mathbf{x})$: convex, differentiability $h(\mathbf{x})$: convex, can be nonsmooth The solution is nonempty.

¹Euclidean distance here. Bregman distance in general, [Bec17].

Development of the Proximal Gradient Methods

Composite problem:

$$\min_{\boldsymbol{x}} \phi(\boldsymbol{x}) \triangleq g(\boldsymbol{x}) + h(\boldsymbol{x})$$

 $g(\mathbf{x})$: convex, differentiability $h(\mathbf{x})$: convex, can be nonsmooth The solution is nonempty.

 \boldsymbol{x}_k : solution at *k*th iteration Linearizing $g(\boldsymbol{x})$ at \boldsymbol{x}_k^{-1} :

$$g(\mathbf{x}) + h(\mathbf{x}) \leq \hat{\phi}(\mathbf{x}, \mathbf{x}_k) \triangleq g(\mathbf{x}_k) + \langle \nabla_{\mathbf{x}} g(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 + h(\mathbf{x})$$
$$\nabla_{\mathbf{x}}^2 g(\mathbf{x}) \leq L$$

¹Euclidean distance here. Bregman distance in general, [Bec17].

Development of the Proximal Gradient Methods

Composite problem:

$$\min_{\boldsymbol{x}} \phi(\boldsymbol{x}) \triangleq g(\boldsymbol{x}) + h(\boldsymbol{x})$$

 $g(\mathbf{x})$: convex, differentiability $h(\mathbf{x})$: convex, can be nonsmooth The solution is nonempty.

 \boldsymbol{x}_k : solution at *k*th iteration Linearizing $g(\boldsymbol{x})$ at \boldsymbol{x}_k^{-1} :

$$g(\mathbf{x}) + h(\mathbf{x}) \leq \hat{\phi}(\mathbf{x}, \mathbf{x}_k) \triangleq g(\mathbf{x}_k) + \langle \nabla_{\mathbf{x}} g(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_k||_2^2 + h(\mathbf{x})$$

$$\nabla_{\mathbf{x}}^2 g(\mathbf{x}) \leq L$$
Minimize $\hat{\phi}(\mathbf{x}, \mathbf{x}_k)$ instead of minimizing $\phi(\mathbf{x})$ at $(k+1)$ th iteration:

$$Prox_{\frac{1}{L}h}(\mathbf{v}_k) = \arg\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{x} - \mathbf{v}_k||_2^2 + \frac{1}{L}h(\mathbf{x})$$
: Closed-Form

$$\mathbf{v}_k = \mathbf{x}_k - \frac{1}{L} \nabla_{\mathbf{x}} g(\mathbf{x}_k)$$

¹Euclidean distance here. Bregman distance in general, [Bec17].

Acceleration – Nesterov/FISTA

Set $y_1 = x_0$ and $t_1 = 1$ and repeat the following at step $k \ge 1$

•
$$\mathbf{x}_{k} = Prox_{\frac{1}{L}h}(\mathbf{y}_{k} - \frac{1}{L}\nabla_{\mathbf{x}}g(\mathbf{y}_{k}))$$

• $t_{k+1} = \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2}$
• $\mathbf{y}_{k+1} = \mathbf{x}_{k} + \frac{t_{k-1}}{t_{k+1}}(\mathbf{x}_{k} - \mathbf{x}_{k-1})$

Acceleration - Nesterov/FISTA

Set $y_1 = x_0$ and $t_1 = 1$ and repeat the following at step $k \ge 1$

•
$$\mathbf{x}_{k} = Prox_{\frac{1}{L}h}(\mathbf{y}_{k} - \frac{1}{L}\nabla_{\mathbf{x}}g(\mathbf{y}_{k}))$$

• $t_{k+1} = \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2}$
• $\mathbf{y}_{k+1} = \mathbf{x}_{k} + \frac{t_{k-1}}{t_{k+1}}(\mathbf{x}_{k} - \mathbf{x}_{k-1})$

Convergence Speed:

Proximal: $O(\frac{1}{k})$ Acceleration: $O(\frac{1}{k^2})$

Acceleration - Nesterov/FISTA

Set $y_1 = x_0$ and $t_1 = 1$ and repeat the following at step $k \ge 1$

•
$$\mathbf{x}_{k} = Prox_{\frac{1}{L}h}(\mathbf{y}_{k} - \frac{1}{L}\nabla_{\mathbf{x}}g(\mathbf{y}_{k}))$$

• $t_{k+1} = \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2}$
• $\mathbf{y}_{k+1} = \mathbf{x}_{k} + \frac{t_{k-1}}{t_{k+1}}(\mathbf{x}_{k} - \mathbf{x}_{k-1})$

Convergence Speed:

Proximal: $O(\frac{1}{k})$ Acceleration: $O(\frac{1}{k^2})$

Can we do better?
No closed-form —
$$Prox_{\frac{1}{L}h}(\cdot)$$
 — RED

Background

RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

Weighted Proximal Methods

Linearizing $g(\mathbf{x})$ with higher accuracy:

$$g(\boldsymbol{x}) + h(\boldsymbol{x}) \leq \hat{\phi}(\boldsymbol{x}, \boldsymbol{x}_k)$$
$$\hat{\phi}(\boldsymbol{x}, \boldsymbol{x}_k) \triangleq g(\boldsymbol{x}_k) + \langle \nabla_{\boldsymbol{x}} g(\boldsymbol{x}_k), \boldsymbol{x} - \boldsymbol{x}_k \rangle + \frac{1}{2a_k} \underbrace{(\boldsymbol{x} - \boldsymbol{x}_k)^T \boldsymbol{B}_k(\boldsymbol{x} - \boldsymbol{x}_k)}_{\boldsymbol{x} + h(\boldsymbol{x})} + h(\boldsymbol{x})$$

 a_k stepsize or use 1 and $B_k \succ 0$. Define

$$Prox_{a_kh}^{WPM}(\mathbf{v}_k) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}_k\|_{\mathbf{B}_k}^2 + a_k h(\mathbf{x}) : \text{No Closed-Form}$$
$$\mathbf{v}_k = \mathbf{x}_k - a_k \mathbf{B}_k^{-1} \nabla_{\mathbf{x}} g(\mathbf{x}_k)$$

Weighted Proximal Methods

Linearizing $g(\mathbf{x})$ with higher accuracy:

$$g(\boldsymbol{x}) + h(\boldsymbol{x}) \leq \hat{\phi}(\boldsymbol{x}, \boldsymbol{x}_k)$$
$$\hat{\phi}(\boldsymbol{x}, \boldsymbol{x}_k) \triangleq g(\boldsymbol{x}_k) + \langle \nabla_{\boldsymbol{x}} g(\boldsymbol{x}_k), \boldsymbol{x} - \boldsymbol{x}_k \rangle + \frac{1}{2a_k} \underbrace{(\boldsymbol{x} - \boldsymbol{x}_k)^T \boldsymbol{B}_k(\boldsymbol{x} - \boldsymbol{x}_k)}_{a_k} + h(\boldsymbol{x})$$
$$a_k \text{ stepsize or use 1 and } \boldsymbol{B}_k \succ 0. \text{ Define}$$

$$Prox_{a_kh}^{WPM}(\mathbf{v}_k) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}_k\|_{\mathbf{B}_k}^2 + a_k h(\mathbf{x}) : \text{No Closed-Form}$$
$$\mathbf{v}_k = \mathbf{x}_k - a_k \mathbf{B}_k^{-1} \nabla_{\mathbf{x}} g(\mathbf{x}_k)$$

In RED:

Remind the denoising f(x) in RED: high complexity

Weighted Proximal Methods

Linearizing $g(\mathbf{x})$ with higher accuracy:

$$g(\boldsymbol{x}) + h(\boldsymbol{x}) \leq \hat{\phi}(\boldsymbol{x}, \boldsymbol{x}_{k})$$
$$\hat{\phi}(\boldsymbol{x}, \boldsymbol{x}_{k}) \triangleq g(\boldsymbol{x}_{k}) + \langle \nabla_{\boldsymbol{x}} g(\boldsymbol{x}_{k}), \boldsymbol{x} - \boldsymbol{x}_{k} \rangle + \frac{1}{2a_{k}} \underbrace{(\boldsymbol{x} - \boldsymbol{x}_{k})^{T} \boldsymbol{B}_{k}(\boldsymbol{x} - \boldsymbol{x}_{k})}_{a_{k} \text{ stepsize or use 1 and } \boldsymbol{B}_{k} \succ 0. \text{ Define}$$

$$Prox_{a_kh}^{WPM}(\mathbf{v}_k) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}_k\|_{\mathbf{B}_k}^2 + a_kh(\mathbf{x}) : \text{No Closed-Form}$$
$$\mathbf{v}_k = \mathbf{x}_k - a_k \mathbf{B}_k^{-1} \nabla_{\mathbf{x}} g(\mathbf{x}_k)$$

In RED:

Remind the denoising f(x) in RED: high complexity

To reduce the calling of f(x), we set

$$g(\boldsymbol{x}) = \lambda \rho(\boldsymbol{x})$$

and

$$h(\mathbf{x}) = \ell(\mathbf{x}, \mathbf{y})$$

The Choice of
$$\boldsymbol{B}_k - \underbrace{\ell(\boldsymbol{x}, \boldsymbol{y})}_{h(\boldsymbol{x})} + \underbrace{\frac{\lambda}{2} \boldsymbol{x}^T (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))}_{g(\boldsymbol{x})}$$

The Choice of
$$\boldsymbol{B}_k - \underbrace{\ell(\boldsymbol{x}, \boldsymbol{y})}_{h(\boldsymbol{x})} + \underbrace{\frac{\lambda}{2} \boldsymbol{x}^T (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))}_{g(\boldsymbol{x})}$$

Proximal method:

$$Prox_{\frac{1}{L}h}(\boldsymbol{v}_{k}) = \arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k}\|_{2}^{2} + \frac{1}{L}h(\boldsymbol{x}) : \text{Closed-Form}$$
$$\boldsymbol{v}_{k} = \boldsymbol{x}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} g(\boldsymbol{x}_{k})$$

WPMs:

$$Prox_{a_kh}^{WPM}(\mathbf{v}_k) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}_k\|_{\mathbf{B}_k}^2 + a_kh(\mathbf{x}) : \text{No Closed-Form}$$
$$\mathbf{v}_k = \mathbf{x}_k - a_k \mathbf{B}_k^{-1} \nabla_{\mathbf{x}} g(\mathbf{x}_k)$$

• $B_k = \lambda I$ and $a_k = 1$: recover proximal method

The Choice of
$$\boldsymbol{B}_k - \underbrace{\ell(\boldsymbol{x}, \boldsymbol{y})}_{h(\boldsymbol{x})} + \underbrace{\frac{\lambda}{2} \boldsymbol{x}^T (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))}_{g(\boldsymbol{x})}$$

Proximal method:

$$Prox_{\frac{1}{L}h}(\boldsymbol{v}_{k}) = \arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k}\|_{2}^{2} + \frac{1}{L}h(\boldsymbol{x}) : \text{Closed-Form}$$
$$\boldsymbol{v}_{k} = \boldsymbol{x}_{k} - \frac{1}{L} \nabla_{\boldsymbol{x}} g(\boldsymbol{x}_{k})$$

WPMs:

► ...

$$\begin{aligned} & \textit{Prox}_{a_k h}^{\textit{WPM}}(\textit{\textit{v}}_k) = \arg\min_{\textit{\textit{x}}} \frac{1}{2} \|\textit{\textit{x}} - \textit{\textit{v}}_k\|_{\textit{\textit{B}}_k}^2 + a_k h(\textit{\textit{x}}) : \text{No Closed-Form} \\ & \textit{\textit{v}}_k = \textit{\textit{x}}_k - a_k \textit{\textit{B}}_k^{-1} \nabla_{\textit{\textit{x}}} g(\textit{\textit{x}}_k) \end{aligned}$$

• $B_k = \lambda I$ and $a_k = 1$: recover proximal method

▶ \boldsymbol{B}_k : the Hessian of $g(\boldsymbol{x}) \rightarrow$ Quasi-Newton [NW06]

Estimate B_k — SR1

Algorithm 1 SR1

Initialization: $k = 1, \gamma = 1.25, \delta = 10^{-8}, x_k, x_{k-1}, \nabla g(x_k), \nabla g(x_{k-1}).$ 1: if k = 1 then 2: 3: else 4: $B_k \leftarrow \alpha I$ Set $s_k \leftarrow x_k - x_{k-1}$ and $m_k \leftarrow \nabla g(x_k) - \nabla g(x_{k-1})$ Calculate $\tau \leftarrow \gamma \frac{\|\boldsymbol{m}_k\|_2^2}{\langle \boldsymbol{s}_k, \boldsymbol{m}_k \rangle}$ 5: 6: if $\tau < 0$ then 7: $B_k \leftarrow \alpha I$ 8: else 9: $H_0 \leftarrow \tau I$ 10: if $|\langle m_k - H_0 s_k, s_k \rangle| \le \delta ||s_k||_2 ||m_k - H_0 s_k||_2$ then 11: 12: 13: $u_k \leftarrow 0$ else $u_k \leftarrow \frac{m_k - H_0 s_k}{\sqrt{m_k - H_0 s_k \cdot s_k}}$ 14: end if 15: $\boldsymbol{B}_k \leftarrow \boldsymbol{H}_0 + \boldsymbol{u}_k \boldsymbol{u}_k^T$ 16: end if 17: end if 18: Return: Bk

Background

RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring

Image Super-Resolution (SR) Additional Results

Image Deblurring - Uniform

Image Deblurring - Gaussian

Background

RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

Image Super-Resolution (SR)

Background

RED and Its Properties Existing Solvers in RED

Weighted Proximal Methods (WPMs)

Proximal Methods and Its Acceleration How? and Why? – WPMs

Numerical Results

Image Deblurring Image Super-Resolution (SR) Additional Results

More Results [HYZ19]

FP – 200 denoiser evaluations Denoiser evaluations, other methods – compariable PSNR

1st and 2nd row: deblurring with uniform and Gaussian blurs.

3rd row: SR

	FP-MPE	APG	WPM
Butterfly	54	34	25
	54	26	17
	80	51	26
Boats	24	20	21
	60	34	22
	36	20	12
House	24	18	19
	62	26	25
	18	15	10
Parrot	39	30	20
	52	40	36
	49	31	28
Lena	48	34	29
	47	16	15
	37	26	18
Barbara	14	12	11
	48	23	16
	17	15	11
Peppers	42	29	22
	41	40	34
	38	30	28
Leaves	50	41	34
	36	18	14
	60	41	12

Conclusion

WPMs are good if no closed-form solution exists for the proximal operator.

Thanks & Questions?

Amir Beck.

First-Order Methods in Optimization, volume 25. SIAM, 2017.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.

Distributed optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends® *in Machine Learning*, 3(1):1–122, 2011.

Tao Hong, Yaniv Romano, and Michael Elad. Acceleration of red via vector extrapolation.

Journal of Visual Communication and Image Representation, page 102575, 2019.

- Tao Hong, Irad Yavneh, and Michael Zibulevsky. Solving red via weighted proximal methods. *arXiv preprint arXiv:1905.13052*, 2019.
- Jorge Nocedal and Stephen J. Wright. *Numerical Optimization.*

Springer, 2006.

- Yaniv Romano, Michael Elad, and Peyman Milanfar.
 The little engine that could: Regularization by denoising (red).
 SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.
- Edward T Reehorst and Philip Schniter.

Regularization by denoising: Clarifications and new interpretations.

IEEE Transactions on Computational Imaging, 5(1):52–67, 2019.