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Inverse Problems – Optimization Problem

Image Denoising - “Simplest” Inverse:

y︸︷︷︸
Measured

= x︸︷︷︸
Clean

+ n︸︷︷︸
Noise (AWGN)

How?
Maximum a Posteriori Probability (MAP) – Prior

Optimization Problem

x̂ = argmin
x

`(x,y)︸ ︷︷ ︸
Data Fidelity

+λρ(x)︸︷︷︸
Prior

`(x,y) : linear or nonlinear→ 1
2σ2 ‖x−y‖2

2 or 1
2σ2 ‖Hx−y‖2

2
ρ(·) : TV, sparsity, low-rank, CNN etc.

Finding effective ρ(·)?
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What is RED? – REgularization by Denoising

Can we utilize these denoising algorithms as the prior? and How?

semi-positive

Romano et al. [REM17]→ RED:

ρ(x) =
1
2

xT (x− f (x))

f (x) : abstract image denoising algorithms

x̂ = argmin
x

φ(x), `(x,y)+
λ

2
xT (x− f (x))

How to minimize φ(x)? It is weird→ f (x).
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The Properties of RED
Assumptions:

I Differentiability: f (x) : [0,1]n→ [0,1]n

I Local Homogeneity: f (cx) = cf (x), if |c−1| ≤ ε� 1

I Passivity: ‖f (x)‖ ≤ ‖x‖

∇x f (x) ·x = lim
ε−>0

f(x+εx)−f(x)
ε

= lim
ε−>0

(1+ε)f(x)−f(x)
ε

= f (x)

∂
(

1
2 xT (x− f (x))

)
∂x

= x− 1
2

f (x)− 1
2

∇x f (x) ·x = x− f (x)

∂2
(

1
2 xT (x− f (x))

)
∂x∂xT � 0

Conclusions:

I ρ(x) is convex. If `(x,y) is convex, φ(x) is convex.

I Evaluate one time gradient or φ(x), call one time f (x).
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How Many Algorithms Satisfy these Assumptions?

[REM17]: We have many, some of them are state-of-the-art.

NLM, Bilateral, kernal regression, TNRD etc.

Others ε-modified: Median, K-svd, BM3D, EPLL, CNN etc.
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Solvers in RED – `(x,y)+ λ

2xT (x− f (x))

I gradient based methods: gradient descent/Nesterov Acceleration,
conjugate gradient, BFGS, LBFGS etc. – line search? [NW06]

I ADMM [BPC+11]

I fixed-point (FP) [REM17]

1
σ2 HT (Hxk+1−y)+λ(xk+1− f (xk)) = 0 Fourier or CG

I Vector Extrapolation (VE) [HRE19]

I Accelerated Proximal Gradient (APG) [RS19]

I ...

In practice: APG≥ VE > FP > ADMM > gradient based
But, but, but

Weighted Proximal Methods can do better. :-)
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Development of the Proximal Gradient Methods
Composite problem:

min
x

φ(x), g(x)+h(x)

g(x): convex, differentiability
h(x): convex, can be nonsmooth
The solution is nonempty.

xk : solution at k th iteration
Linearizing g(x) at xk

1:

g(x)+h(x)≤ φ̂(x,xk), g(xk)+<∇xg(xk),x−xk >+
L
2
‖x−xk‖2

2+h(x)

∇2
xg(x)� L

Minimize φ̂(x,xk) instead of minimizing φ(x) at (k +1)th iteration:

Prox 1
L h(vk) = argmin

x

1
2
‖x−vk‖2

2 +
1
L

h(x) : Closed-Form

vk = xk −
1
L

∇xg(xk)

1Euclidean distance here. Bregman distance in general, [Bec17].
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Acceleration – Nesterov/FISTA

Set y1 = x0 and t1 = 1 and repeat the following at step k ≥ 1

I xk = Prox 1
L h(yk − 1

L ∇xg(yk))

I tk+1 =
1+
√

1+4t2
k

2

I yk+1 = xk +
tk−1
tk+1

(xk −xk−1)

Convergence Speed:

Proximal: O( 1
k )

Acceleration: O( 1
k2 )

Can we do better?

No closed-form —– Prox 1
L h(·) —– RED
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Weighted Proximal Methods
Linearizing g(x) with higher accuracy:

g(x)+h(x)≤ φ̂(x,xk)

φ̂(x,xk), g(xk)+<∇xg(xk),x−xk >+
1

2ak
(x−xk)

T Bk(x−xk) +h(x)

ak stepsize or use 1 and Bk � 0. Define

ProxWPM
ak h (vk) = argmin

x

1
2
‖x−vk‖2

Bk
+ak h(x) : No Closed-Form

vk = xk −ak B−1
k ∇xg(xk)

In RED:

Remind the denoising f (x) in RED: high complexity

To reduce the calling of f (x), we set

g(x) = λρ(x)

and

h(x) = `(x,y)
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The Choice of Bk – `(x,y)︸ ︷︷ ︸
h(x)

+
λ

2
xT (x− f (x))︸ ︷︷ ︸

g(x)

Proximal method:

Prox 1
L h(vk) = argmin

x

1
2
‖x−vk‖2

2 +
1
L

h(x) : Closed-Form

vk = xk −
1
L

∇xg(xk)

WPMs:

ProxWPM
ak h (vk) = argmin

x

1
2
‖x−vk‖2

Bk
+ak h(x) : No Closed-Form

vk = xk −ak B−1
k ∇xg(xk)

I Bk = λI and ak = 1: recover proximal method
I Bk : the Hessian of g(x)→ Quasi-Newton [NW06]
I ...



37/50

The Choice of Bk – `(x,y)︸ ︷︷ ︸
h(x)

+
λ

2
xT (x− f (x))︸ ︷︷ ︸

g(x)
Proximal method:

Prox 1
L h(vk) = argmin

x

1
2
‖x−vk‖2

2 +
1
L

h(x) : Closed-Form

vk = xk −
1
L

∇xg(xk)

WPMs:

ProxWPM
ak h (vk) = argmin

x

1
2
‖x−vk‖2

Bk
+ak h(x) : No Closed-Form

vk = xk −ak B−1
k ∇xg(xk)

I Bk = λI and ak = 1: recover proximal method

I Bk : the Hessian of g(x)→ Quasi-Newton [NW06]
I ...



38/50

The Choice of Bk – `(x,y)︸ ︷︷ ︸
h(x)

+
λ

2
xT (x− f (x))︸ ︷︷ ︸

g(x)
Proximal method:

Prox 1
L h(vk) = argmin

x

1
2
‖x−vk‖2

2 +
1
L

h(x) : Closed-Form

vk = xk −
1
L

∇xg(xk)

WPMs:

ProxWPM
ak h (vk) = argmin

x

1
2
‖x−vk‖2

Bk
+ak h(x) : No Closed-Form

vk = xk −ak B−1
k ∇xg(xk)

I Bk = λI and ak = 1: recover proximal method
I Bk : the Hessian of g(x)→ Quasi-Newton [NW06]
I ...



39/50

Estimate Bk — SR1

Algorithm 1 SR1
Initialization: k = 1, γ = 1.25, δ = 10−8 , xk , xk−1 , ∇g(xk ), ∇g(xk−1).
1: if k = 1 then
2: Bk ← αI
3: else
4: Set sk ← xk −xk−1 and mk ← ∇g(xk )−∇g(xk−1)

5: Calculate τ← γ
‖mk ‖22
〈sk ,mk 〉

6: if τ < 0 then

7: Bk ← αI

8: else
9: H0 ← τI

10: if | 〈mk −H0sk ,sk 〉 | ≤ δ‖sk ‖2‖mk −H0sk ‖2 then
11: uk ← 0
12: else
13: uk ←

mk−H0sk√
〈mk−H0sk ,sk 〉

14: end if

15: Bk ← H0 +uk uT
k

16: end if
17: end if
18: Return: Bk
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Image Deblurring - Uniform
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Image Deblurring - Gaussian
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Image Super-Resolution (SR)
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More Results [HYZ19]

FP – 200 denoiser evaluations

Denoiser evaluations, other
methods – compariable PSNR

1st and 2nd row: deblurring with
uniform and Gaussian blurs.

3rd row: SR

FP-MPE APG WPM

Butterfly
54 34 25
54 26 17
80 51 26

Boats
24 20 21
60 34 22
36 20 12

House
24 18 19
62 26 25
18 15 10

Parrot
39 30 20
52 40 36
49 31 28

Lena
48 34 29
47 16 15
37 26 18

Barbara
14 12 11
48 23 16
17 15 11

Peppers
42 29 22
41 40 34
38 30 28

Leaves
50 41 34
36 18 14
60 41 12
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Conclusion

WPMs are good if no closed-form solution exists for
the proximal operator.
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Thanks & Questions?
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